Dimensional estimates for singular sets in geometric variational problems with free boundaries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensional Estimates for Singular Sets in Geometric Variational Problems with Free Boundaries

We show that singular sets of free boundaries arising in codimension one anisotropic geometric variational problems are Hn−3-negligible, where n is the ambient space dimension. In particular our results apply to capillarity type problems, and establish everywhere regularity in the three-dimensional case.

متن کامل

Variational Problems with Two Phases and Their Free Boundaries

The problem of minimizing /[Vu|2 + q2(x)\2(v)] dx in an appropriate class of functions v is considered. Here q(x) ¥= 0 and A2(t>) = X2 if v < 0, = X22 if v > 0. Any minimizer u is harmonic in {u ¥= 0} and | Vu|2 has a jump a2(x)(\]-\22) across the free boundary [u ¥= 0). Regularity and various properties are established for the minimizer u and for the free boundary. Introduction. In this paper ...

متن کامل

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

Variational Iterative Method Applied to Variational Problems with Moving Boundaries

In this paper, He’s variational iterative method has been applied to give exact solution of the Euler Lagrange equation which arises from the variational problems with moving boundaries and isoperimetric problems. In this method, general Lagrange multipliers are introduced to construct correction functional for the variational problems. The initial approximations can be freely chosen with possi...

متن کامل

Nonconvex Variational Problems with General Singular Perturbations

We study the effect of a general singular perturbation on a nonconvex variational problem with infinitely many solutions. Using a scaling argument and the theory of T-convergence of nonlinear functionals, we show that if the solutions of the perturbed problem converge in L1 as the perturbation parameter goes to zero, then the limit function satisfies a classical minimal surface problem. Introdu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2017

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crelle-2014-0100